183 research outputs found

    Histological and Immunohistochemical Evaluation of Autologous Cultured Bone Marrow Mesenchymal Stem Cells and Bone Marrow Mononucleated Cells in Collagenase-Induced Tendinitis of Equine Superficial Digital Flexor Tendon

    Get PDF
    The aim of this study was to compare treatment with cultured bone marrow stromal cells (cBMSCs), bone marrow Mononucleated Cells (BMMNCs), and placebo to repair collagenase-induced tendinitis in horses. In six adult Standardbred horses, 4000 IU of collagenase were injected in the superficial digital flexor tendon (SDFT). Three weeks after collagenase treatment, an average of either 5.5 × 106 cBMSCs or 1.2 × 108 BMMNCs, fibrin glue, and saline solution was injected intralesionally in random order. In cBMSC- and BMMNCS-treated tendons, a high expression of cartilage oligomeric matrix protein (COMP) and type I collagen, but low levels of type III collagen were revealed by immunohistochemistry, with a normal longitudinally oriented fiber pattern. Placebo-treated tendons expressed very low quantities of COMP and type I collagen but large numbers of randomly oriented type III collagen fibers. Both cBMSC and BMMNCS grafts resulted in a qualitatively similar heling improvement of tendon extracellular matrix, in terms of the type I/III collagen ratio, fiber orientation, and COMP expression

    1H-NMR metabolomic profile of healthy and osteoarthritic canine synovial fluid before and after UC-II supplementation

    Get PDF
    The aim of the study was to compare the metabolomic synovial fluid (SF) profile of dogs affected by spontaneous osteoarthritis (OA) and supplemented with undenatured type II collagen (UC-II), with that of healthy control dogs. Client-owned dogs were enrolled in the study and randomized in two different groups, based on the presence/absence of OA (OA group and OA-free group). All dogs were clinically evaluated and underwent SF sampling for 1H-Nuclear Magnetic Resonance spectroscopy (1H-NMR) analysis at time of presentation. All dogs included in OA group were supplemented with UC-II orally administered for 30 days. After this period, they were reassessed (OA-T30). The differences in the 1H-NMR metabolic SFs profiles between groups (OA-free, OA-T0 and OA-T30) were studied. The multivariate statistical analysis performed on SFs under different conditions (OA-T0 vs OA-T30 SFs; OA-T0 vs OA-free SFs and OA-T30 vs OA-free SFs) gave models with excellent goodness of fit and predictive parameters, revealed by a marked separation between groups. β-Hydroxybutyrate was identified as a characteristic compound of osteoarthritic joints, showing the important role of fat metabolism during OA. The absence of β-hydroxybutyrate after UC-II supplementation suggests the supplement’s effectiveness in rebalancing the metabolism inside the joint. The unexpectedly high level of lactate in the OA-free group suggests that lactate could not be considered a good marker for OA. These results prove that 1H-NMR-based metabolomic analysis is a valid tool to study and monitor OA and that UC-II improves clinical symptoms and the SF metabolic profile in OA dog

    Ultrastructural study of cultured ovine bone marrow-derived mesenchymal stromal cells.

    Get PDF
    Ovine bone marrow-derived mesenchymal stromal cells (oBM-MSCs) represent a good animal model for cell-based therapy and tissue engineering. Despite their use as a new therapeutic tool for several clinical applications, the morphological features of oBM-MSCs are yet unknown. Therefore, in this study the ultrastructural phenotype of these cells was analysed by transmission electron microscopy (TEM). The oBM-MSCs were isolated from the iliac crest and cultured until they reached near-confluence. After trypsinization, they were processed to investigate their ultrastructural features as well as specific surface marker proteins by flow cytometry and immunogold electron microscopy. Flow cytometry displayed that all oBM-MSCs lacked expression of CD31, CD34, CD45, HLA-DR whereas they expressed CD44, CD58, HLAI and a minor subset of the cell population (12%) exhibited CD90. TEM revealed the presence of two morphologically distinct cell types: cuboidal electron-lucent cells and spindle-shaped electron-dense cells, both expressing the CD90 antigen. Most of the electron-lucent cells showed glycogen aggregates, dilated cisternae of RER, moderately developed Golgi complex, and secretory activity. The electron-dense cell type was constituted by two different cell-populations: type A cells with numerous endosomes, dense bodies, rod-shaped mitochondria and filopodia; type B cells with elongated mitochondria, thin pseudopodia and cytoplasmic connectivity with electron-lucent cells. These morphological findings could provide a useful support to identify “in situ” the cellular components involved in the cell-therapy when cultured oBM-MSCs are injected

    Characterization and in Vivo Biological Performance of Biosilicate

    Get PDF
    After an introduction showing the growing interest in glasses and glass-ceramics as biomaterials used for bone healing, we describe a new biomaterial named Biosilicate. Biosilicate is the designation of a group of fully crystallized glass-ceramics of the Na2O-CaO-SiO2-P2O5 system. Several in vitro tests have shown that Biosilicate is a very active biomaterial and that the HCA layer is formed in less than 24 hours of exposure to simulated body fluid (SBF) solution. Also, in vitro studies with osteoblastic cells have shown that Biosilicate disks supported significantly larger areas of calcified matrix compared to 45S5 Bioglass, indicating that this bioactive glass-ceramic may promote enhancement of in vitro bone-like tissue formation in osteogenic cell cultures. Finally, due to its special characteristics, Biosilicate has also been successfully tested in several in vivo studies. These studies revealed that the material is biocompatible, presents excellent bioactive properties, and is effective to stimulate the deposition of newly formed bone in animal models. All these data highlight the huge potential of Biosilicate to be used in bone regeneration applications.Universidade Federal de São Paulo, Dept Biosci, BR-11060001 Santos, SP, BrazilUniv Fed Sao Carlos, Dept Mat Engn, Vitreous Mat Lab, BR-13565905 Sao Carlos, SP, BrazilUniv Fed Sao Carlos, Dept Physiotherapy, BR-13565905 Sao Carlos, SP, BrazilUniversidade Federal de São Paulo, Dept Biosci, BR-11060001 Santos, SP, BrazilWeb of Scienc

    Renal progenitor cells revert LPS-induced endothelial-to-mesenchymal transition by secreting CXCL6, SAA4, and BPIFA2 antiseptic peptides

    Get PDF
    Endothelial dysfunction is a hallmark of LPS-induced acute kidney injury (AKI). Endothelial cells (ECs) acquired a fibroblast-like phenotype and contributed to myofibroblast generation through the endothelial-to-mesenchymal transition (EndMT) process. Of note, human adult renal stem/progenitor cells (ARPCs) enhance the tubular regenerative mechanism during AKI but little is known about their effects on ECs. Following LPS exposure, ECs proliferated, decreased EC markers CD31 and vascular endothelial cadherin, and up-regulated myofibroblast markers, collagen I, and vimentin. The coculture with ARPCs normalized the EC proliferation rate and abrogated the LPS-induced EndMT. The gene expression analysis showed that most of the genes modulated in LPS-stimulated ARPCs belong to cell activation and defense response pathways. We showed that the ARPC-specific antifibrotic effect is exerted by the secretion of CXCL6, SAA4, and BPIFA2 produced after the anaphylatoxin stimulation. Next, we investigated the molecular signaling that underlies the ARPC protective mechanism and found that renal progenitors diverge from differentiated tubular cells and ECs in myeloid differentiation primary response 88-independent pathway activation. Finally, in a swine model of LPS-induced AKI, we observed that activated ARPCs secreted CXCL6, SAA4, and BPIFA2 as a defense response. These data open new perspectives on the treatment of both sepsis- and endotoxemia-induced AKI, suggesting an underestimated role of ARPCs in preventing endothelial dysfunction and novel strategies to protect the endothelial compartment and promote kidney repair.-Sallustio, F., Stasi, A., Curci, C., Divella, C., Picerno, A., Franzin, R., De Palma, G., Rutigliano, M., Lucarelli, G., Battaglia, M., Staffieri, F., Crovace, A., Pertosa, G. B., Castellano, G., Gallone, A., Gesualdo, L. Renal progenitor cells revert LPS-induced endothelial-to-mesenchymal transition by secreting CXCL6, SAA4, and BPIFA2 antiseptic peptides

    Surface Glycan Pattern of Canine, Equine, and Ovine Bone Marrow-Derived Mesenchymal Stem Cells

    No full text
    The use of bone marrow-derived mesenchymal stem cells (MSCs) for clinical and experimental studies is increasing, but full characterization of MSCs in veterinary species is hindered by the variability in species-specific cell surface marker expression and antibody cross reactivity. Recent studies demonstrated that the glycans in the glycocalyx of MSCs are promising candidates as cell biomarkers. In the present study, we analysed the glycocalyx of canine MSCs (cMSCs), ovine MSCs (oMSCs), and equine MSCs (eMSCs) by using a cell microarray procedure in which MSCs were spotted on microarray slides and incubated with a panel of 14 biotinylated lectins and Cy3-conjugated streptavidin. The signal intensity was then detected by using a microarray scanner. The lectin-binding signals indicated that the MSC surface of the investigated species contained both N- and O-linked glycan types, with N-glycosylation predominating over O-glycosylation and fucosylation being more abundant than sialylation. Relative quantification revealed an interspecific difference between these glycans. In addition, cMSCs expressed more α2,3-linked sialic acid (MAL II), terminal lactosamine (RCA120), and α1,6 and α1,3 fucosylated oligosaccharides (PSA, LTA); oMSCs exhibited more T antigen (Jacalin), GalNAcα1,3(LFucα1,2)Galβ1,3/4GlcNAcβ1 (DBA), chitotriose (succinylated WGA), and α1,2-linked fucose (UEA I); and eMSCs showed a higher density of α2,6 sialic acids (SNA) and high mannose N-glycans (Con A). By using cell microarray methodology, we have for the first time demonstrated differences in the glycosylation profiles of cMSC, oMSC, and eMSC surfaces. These results could be valuable as resources and references for MSC differentiation and molecular remodeling in clinical cell-based therapy and tissue engineering studies
    corecore